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Horseshoe chaos in a bistable optical system under a modulated incident field
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It is shown analytically and numerically that a single-mode bistable optical system, under a modulated
incident field, may undergo a chaotical behavior of Smale horseshoe type. The threshold for the onset of chaos
and the bifurcating curves for nonlinear resonances are derived semianalytically, by means of the Melnikov
method, and numerically checked. We also demonstrate the existence of multistable attractors. Two time-
periodic states and a strange attractor are shown to coexist for a certain range of parameters.
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[. INTRODUCTION for the threshold of the onset of chaos by means of Melnik-
. . v's method. If the amplitude of the modulation is large
'I_'he_ response of nonll_ne_ar dynam|ca_| systems to extern nough to overcome the dissipatigabsorptive terms and
periodic forcing may exhibit a large variety of complex be- oo in the cavifythen the system may exhibit multistable
havior, including phase-locked phenomena, quasiperiodicityairactors consisting of two time-periodic states and a strange
and chaos. In par'ucula_r, dynamic chaos ha; been detected ractor. As a result, one may expect first that switching
a large number of nonlinear systems of various natures. Onﬁ’nenomena may occur between complex attractappear-
of these problems that has been studied extensively is opticg{g when modulations are presgnSecond, the transverse
bistability (OB) [1-4]. In fact, optical bistability has become intersections between stable and unstable manif@esara-
one of the most active fields in nonlinear optics not only fortrice§ may give rise to chaotic transport throughout some
the richness in nonlinear dynamical behavi@s 7] but also  particular regions of phase space. More precisely, in the ab-
for the potential applications of bistable optical devit®®].  sence of modulations, the homoclinic orbit separates the
Indeed, even slow and moderate modulations of the incidenthase-space portrait in three regions. The motions are quali-
field may have a great benefit for signal amplifications intatively different in each one. Furthermore, any initial con-
such optical systems. The recent and growing progress igdition starting in one region remains in it forever. On the
nonlinear optics and particularly in laser systems rendersontrary, under time-periodic amplitude modulations, the un-
them serious and promising candidates for making operatingerlying homoclinic orbit “breaks up,” leading to transverse
devices smaller and fasté]'_o:l However, it is well known intersections between its stable and unstable manifolds, and
that bistable optical systems can exhibit, in addition to reguin particular chaotic regimes make it possible for motions
lar states, complex chaotic attractors. Even though, in geril’lSide the homoclinic orbit to escape it. Similarly, motions
eral, these complex systems have high-dimensional phagaitside the homoclinic orbit may enter it. This gives rise to
space, their chaotic attractors are often low dimensional anth€ phenomenon of transport in phase space between regions
reduced dynamical models still provide a good theoreticapxhibiting qualitatively different motiongfor more details
description of experimental observatidrisl,12. In this pa- ~ about transport theory see R¢L3]). One consequence for
per we are interested in the effects of time-periodic modulabistable optical systems is that the input power for commu-
tions of the applied incident field on the chaotical dynamic oftation may be considerably lower under small time-periodic
a passive optical bistable system. More specifically, we conamplitude modulations.
sider a bistable optical system consisting of an optical unidi- The rest of the paper is organized as follows. In Sec. Il we
rectional ring cavity filled with a passive medium, consistingdive a physical description of the problem. Section IIl pro-
of a collection of homogeneously broadened two-level atomyides a brief review of Melnikov's techniques. Section IV
and subjected to an incident field whose amplitude is timecontains the analytical treatments for both the homoclinic
modulated. We focus on the study of the interaction betwee@rbit and the resulting horseshoe chaos in the system. The
periodic modulations of the incident field and the homoclinicSame approach is applied to study the nonlinear resonances
orbit leading to properties involving the global aspects of theand the coexistence between time-periodic states and a
dynamic and show that the situation may become drasticstrange attractor. Numerical results and a comparison with
even for a reduced dynamical model. We show that the maignalytical predictions are given. Concluding remarks consti-
features are the phase-locked phenomena leading to nonlitite Sec. V.
ear resonance dynamics and transitions from a regular to a
chaotic regime. We show also that the chaotic regime is of  |I. PHYSICAL DESCRIPTION OF THE PROBLEM
Smale horseshoe type and derive semianalytical expressions )
A. Physical model
In this study we consider an OB system that contains an
*Electronic address: taki@Ish.univ-lillel1.fr optical unidirectional cavity filled with a passive medium,
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consisting of homogeneously broadened two-level atoms aniime-periodic modulated. Still, this model captures the main
driven by an external optical signal whose amplitude is timefeatures of the nonlinear dynamics appearing in the system.
periodic modulated. Assuming that the resonant cavity is op-

erating in a single mode and using the plane-wave approxi- B. Reduced model system

mation together with the mean-field limit, we can reduce the

Maxwell-Bloch equation$14] to In order to keep the analysis as simple as possible, we

consider the good cavity case wher& y,,y, . In this situ-
dF _ ation the atomic variables vary in time much more rapidly
gt~ Kly—(1+ie)F—-2CP], (1@  than the field variables and can be eliminated by setting
dP/dt=dD/dt=0 in Eq.(1). Thus one obtains the relations

dP ; 2
— =y, [FD—(1+iA)P], (1b) __(A-i1d)F __1+a
dt Ps=1raz+F2 P2 13 aZr 2
dD 1 i i ;
.z x| [£* _ and the self-contained equation for the field
at |5 (FP*+F*P)+D-1]|, (10
. 2C , 2CA
whereF, D, andP are the normalized slowly varying enve- < = gy =Y—F\ 1+ 957 #1| 0= e |
lopes of the electric field, of the population difference, and of @)

the molecular polarization, respectively. The param€teés

the bistability parameterx is the cavity linewidth, andy, For the sake of simplicity, let us consider conditions of
andy, are the relaxation rates of the population differencepurely dispersive OB15]:

and polarization. The frequencies of the external field, the

cavity, and the atoms are denoted by, w., andw,, re- A?>1, Af>1, 6<A. 3
spectively. The two detuning parameters are defined as . . . .
= (w,— o)y, and#=(w.— wg)!y, . The normalized am- In this case, in (_)rder to go fur_ther_|_nt0 the analysis, it is
plitude of the external field/ is assumed to be real and Sonvenient to write Eq(2) in a simplified form. Il-’;ance we
time-periodic modulated. In the absence of modulations, Eq{€SCalEF, y,lzlazndt by settingr= « 0t, X=(0/2CA)™“F, and

(1) was derived by Bonifacio, Granchi, and Lugi&id] as a =(6/12CA)"(y/6). We write Eq.(2) as a first-order sys-
one-mode theory of optical bistability and has been extentem

sively studied in a number of applications. In fact, they pre- dx

dict absorptive as well as dispersive bistability and the re- _1:y0+X2
sults are qualitatively and quantitatively in rather good dr
agreement with the experimental observatifits 12. It has

been shown that since the bistability parameter is large +A sinor
enough, in the absence of modulations, Eq.undergoes a

period-doubling route to chaos. Many authors have studied

the chaotic dynamics of Eql) for different ranges of con- %: x
trol parameters. Gang, Ning, and HaKei6] have analyzed dr 1
the instability regions in detail and revealed that chaotic at-

tractors may coexsist with time-periodic orbits leading towhere a=(1+A?)6/2CA, &,e=1/0, and 5,6=1/A. The
bistability and even tristability phenomena. In the preseneémplitude modulation is written in the formy=Y,
work, however, we are interested in the effects of time-+&A sinw7, wheree is a small parametegA is the modu-
periodic modulations on the input field, which greatly com-lation of the scaled field/, and the scaled field variabk
plicate the situation. First, it is well known that external =X;+iX,. Note that the third relation in the conditiof3)
modulations favor the nonlinear resonances leading to thef purely dispersive OB leads t6,> §,, which means that
selection between time-periodic attractors. Second, opticdhe two terms in Eq(4) whered, appears may be neglected.
systems with modulated parameters often exhibit experimerin order to extend our analytical analysis to the case where
tal chaotic motion for a large range of parameters includingall terms are significant, we will taka& and 6 large enough
both active(lasers [17] and passive optical systems. More- but of the same order of magnitude. Melnikov's method is
over, chaotic motions have already been experimentally obindependent of the relative order of magnitude in perturba-
served in a passive optical bistable system under &ve terms. In addition, we are not interested in the unper-
frequency-modulated input field18]. The authors have turbed E=0) system in itself; it serves mainly to approxi-
shown numerically that Eq.1) reproduces fairly well their mate the analytical form of the homoclinic orbits. In fact,
experimental observations including chaotic regimes. Still, avhene =0, the unperturbed systefRig. 1) has already been
number of important questions remain to be answered. Whatsed by Lugiato, Milani, and Meystfd9] as a basic system

is the nature of choas appearing in the system? Is it possible derive the analytical threshold for anomalous switching in
to predict the threshold of the onset of chaos? What is thelispersive optical bistability. Furthermore, the unperturbed
structure of the attracting basins? In order to attempt to anproblem cannot describe optical bistability because of the
swer these guestions we concentrate on the reduced modelmfarginal instability of the stationary solutions due to the lack
the good cavity limit, which constitutes a simplified version of dissipation. However, it contains the homoclinic orbit,
of Eg. (1), and assume that the amplitude of the input field iswhich is responsible for the anomalous switching phenom-
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T2 1.0

FIG. 2. Critical curve for the onset of chaos, in the parameter
plane A,w) of the external field input. Discrete symbols corre-
spond to numerical thresholds of chaos. The critical curve for the
outer homoclinic loop is not shown in the figure. It is just a trans-
lated curve, toward high values & of that of the inner one. For
comparison and clarity we have set the other parametera to
=0.5,6,=68,=1, £=0.05, andY,=0.1 for all figures.

We consider a system of ordinary differential equations of
the form

dX
3= 100 +eg(X,7), ®)

where X=(u,v), f=(%88), 9:(32&3)- andg is periodic

in time of periodT. Assume that, foe =0, the above system
possesses a homoclinic orkseparatrix X,(7) to hyperbolic
saddle poinp, (or homoclinic cyclesand a continuous fam-
ily of periodic orbitsX,(7) in the interior ofX, (7). There-
-1.5 fore, Melnikov’s function is defined as

FIG. 1. Phase space of the unperturbed(Q) system(4). A +oo
family of level curves is shown, whem=0.5. One stationary solu- M( 7o) = . f(Xp(7)0g(Xp( 1), 7+ To)dT, (6)
tion is for (a) Yo=0.25>Y,, while the double homoclinic connec-

tion is shown for(b) Y,=0.1<Y..
() Yo ¢ where the wedge product is defined a§0X,=uqv,

enon, as pointed out in Ref19]. Here we show that ho- —Uovi. Note that the initial timer, appears explicitly since
moclinic orbits still play a crucial role in the chaotic behav- solutions of Eq(5) are not invariant under time translations.
ior of the perturbed system when the competition betweefrurthermore g is used for the parametrization of the Poin-
dissipation(absorptive terms and losses in the cavijd  caresection, which is constructed by sampling the coordi-
modulation has been restored. Indeed, the homoclinic orbitgatesu,v each time the functiog completes one period. In
are related to global aspects of the dynamic. So, in the folfact, M(7o) provides a good mesuféo O(s?)], in the Poin-
lowing analysis of the chaotic regimes and nonlinear resocare section, of the distancd(r,) between the stable and
nances leading to it, we will use global perturbation tech-unstable perturbed manifolds, which is defined as
niques originally due to Melnikoy20].
_ M (7o)
lIl. MELNIKOV'S METHOD: PERTURBATIONS d(70)=2 5 o))
OF PLANAR HOMOCLINIC AND PERIODIC ORBITS

+0(&?). 7

| In the same spirit the existence of the periodic orbijg 7)
of periodmT/n (the subharmonigss evaluated by the sub-
anarmonic Melnikov function

Melnikov's method is now widely described in classica
books and paperi1,27. In this section we briefly review
the analytical techniques to be used below. For some typic
applications in physics and fluid mechanics see 2}, see -
also Ref.[24] for very recent developments of Melnikov's Mm/n(To):f (X (7)O(X (), 7+ Tp)d . (8)
techniques. 0 “ “
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Therefore, simple zeros dfl(7;) correspond to transverse e 00
intersections of stable and unstable manifolds leading to !
Smale horseshoe chafl], while those ofM™"(7,) give 0.20 1
rise to subharmonic orbits of periodT.
0.10 -
IV. TEMPORAL CHAOS AND NONLINEAR RESONANCES
0.00
A. Smale horseshoe chaos
We return now to systentd). When ¢=0, the unper- 0107
turbed Hamiltonian reads 020
H(Xq,%p) = (X34 x3) +X,Yo— % In(a+x2+x3) + const
(9) -0.30
and constitutes a one-parameter family of level curves in ~0.40 . ; : . )
1.65 1.70 1.75 1.80 1.85 1.90

phase spacex(,X,). The examination of the stationary fixed
points leads to the bistability conditions, namedy<1 and
Yo<Y., Where FIG. 3. Bifurcation diagram in the Poincasection of the real
partx, of the electric field versus the amplitudeof the modulation

\/_ 2 with w=0.5. The Poincarsection is constructed by sampling the

YC T+vV2a+ )( 1 T 1s \/8—+> . (10 coordinatex; each time the input field completes one period.

A

the analytical predictions for different values of the small
Whena=1 no bistability can occur and we are not interestedparameters and we have observed that the accuracy de-
in this case. Figure 1 displays the phase space showing twereased by increasing This is obvious from the fact that
different situations with typical values of the parametars Melnikov’'s method is a first-order method for the small pa-
andY,. Note the double homoclinic connection, via a saddlerametere [see Eq.(7) in Sec. Ill. Also, in the following
point, of the two homoclinic loops. This situation is highly numerical simulations we have set the parameters to typical
degenerate since each homoclinic loop is formed by the coraluesa=0.5,Y,=0.1, §,=5,=1, ande=0.05. The input
incidence of the stable and unstable manifolds of the saddlgeld parameterA and w are control parameters. Figure 2
fixed point. Hence one would expect them to break up undeshows the critical curve for the onset of chaos, which sepa-
the influence of input field amplitude modulations and dissi-rates the parameter pland,w) into two regions, namely,
pative terms. According to Sec. lll, we use Melnikov's the upper region where the stable and unstable perturbed
method to evaluate the threshold of chaos arising from transnanifolds intersect transversely, sindd 7o) has simple ze-
verse intersections of the stable and unstable manif@tls  ros, and the systertd), which exhibits chaotic behaviors.
We now intruduce the Melnikov functiokl (7o) for the ho-  There exist, in the phase space, sets of chaotic orbits that are
moclinic loopsXy= (X1 ,Xzp) (settingh for both inner and  of Smale horseshoe tyge1]. In the lower region no inter-
outer loop$: section can occur at all. Transitions between these two re-
gions occur by a homoclinic bifurcation. More precisely, the
+oo last case gives the main result of Melnikov’s theory that, for
M(70)=— fﬁ YoXan any parameter in that region, the whole system is not chaotic.
Thus, for all initial conditions the behavior is regular and
globally related to planar systems whose typical behaviors
are fairly well understood. In particular, we recover the clas-
sical S-shaped bistability curve. Note that it is easy to verify,
by using the PoincarBendixon criterion, that there are no
periodic or homoclinic orbits and the only attractors are the
fixed points in the Poincarsections, namely, the resonant
=1,+1,A coswTy, and the forced steady-state oscillations that originate from
the stable equilibrium states. We have not shown the critical
wherel; andl, are the first and second integrals, respec-curve for the outer homoclinic loop, which is similar to that
tively. Therefore, simple zeros o (o) are characterized by of the inner one translated toward high values of the ampli-
the relationA>|l,/1,|=A., where A. can be viewed as tudeA. Chaos has been investigated numerically for differ-
being the minimum amplitude modulatigminimum modu-  ent sets of parameters, and numerical thresholds for typical
lated input power necessary for the system to transit from frequencies are also illustrated in Fig. 2, which are in very
regular to chaotic regimes. To evaluate the integhaland  good agreement with the critical curve for the onset of chaos.
I,, one needs the analytical forms of the homoclinic loopsAlthough the agreement is satisfactory, we have observed
Xy, which are determined by E9). Unfortunately, their that Melnikov’s technique provides a good, but slightly low,
time dependence cannot be obtained in an explicit formestimate of the chaos threshold. Hence we have integrated
Therefore, we will calculate them numerically, using an ap-the system4) for different sets of parameter values and this
proach similar to that used by Taki, Fernandez, and Reinisctendency is confirmed. This might be understood by the fact
in [23]. We emphasize that we have systematically checkethat at the onset of chaos the attracting basin of the chaotic
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FIG. 4. Sequence of period doubling in the Poincseetion defined in Fig. 3. The unperturb@ée., e =0) inner homoclinic loop is
dashed in(a) for referenceA is increased fronfa) 1.7, (b) 1.75,(c) 1.79,(d) 1.797,(e) 1.81, andf) 1.88, corresponding to theT] 2T, 4T,
and 8T transitions, chaos, and chaos, respectively.

regime constitutes a small set of phase space that renders thate, we have observed, at the coexistence threshold, a long-
numerical observation of chaos at the threshold very diffitime chaotic transient that disappears under a small incre-
cult. We also have numerically integrated the systdinin ~ ment of the amplitudé\, as shown in Fig. 5. This important
order to characterize the nature of transitions from regular téeature of the coexistence of time-periodic states and a
chaotic regimes by increasing from zero the amplitddef ~ Strange attractor for a certain range of parameters that is
the field amplitude modulation. The only route to chaos we'elated t_o nonlinear resonances will be discussed in the next
have observed is the classical period-doubling route as digubsection.
played in Figs. 3 and 4 for a typical value of the frequency of

the modulation. However, wheA is further increased the

chaotic behavior develogsee Fig. 3 and a different stable We have observed in the preceding subsection that the
periodic state appears. Concerning this different periodiSmale horseshoe chaos may be related to a sequence of sub-

B. Nonlinear resonances
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FIG. 5. Chaotic transients of the real past of the electric field under a small increment of the amplitude of the modula@he
asymptotic state restabilizes on & periodic state forA=1.8802.(b) Long-time transients chaos before stabilization on tfiep&riodic
state forA=1.8801. Both traces are made with the same initial condition and the parameters are the same as those of Fig. 4.

harmonic bifurcations, which are important for transitionsof the amplitudeA necessary for subharmonic orbita=1

both from linear to nonlinear resonances and from regular tand n=1) to exist, versus frequency. The agreement be-
chaotic behaviors. Thus, in this section we focus on the dytween predictions and numerical thresholds is satisfactory,
namics of large-amplitude periodic orbits inside the ho-except for low frequencies, where Melnikov’'s method pro-
moclinic loops. Again we have evaluated the subharmoniwides slightly lower estimates. By increasiAgrom its criti-
Melnikov function M™"(7,) defined by Eq(8) in the pre-  cal value(for fixed ), the resonant orbits undergo a repeated
ceding subsection, which enables us to detect the existensequence of period doubling. Wharis further increased the

of subharmonics and the occurrence of their saddle-node bsituation becomes more and more complicated. We have ob-
furcations exactly. Hence simple zerosNf""( ) give rise  served a coexistence betwe@ndifferent periodic states and

to subharmonic solutions whose periddgsare related to the (ii) periodic states and a chaotic attractor. This coexistence
period T of the modulation by the relatiof¢=(m/n)T, may be understood by the comparison between the critical
wherem andn are prime integers. In fact, the above simplecurves for the existence of subharmonics on the one hand
zeros, in the parameter plané,@), permit us to estimate and the onset of chaos on the other. Indeed, the critical curve
the minimum values of the amplitud® of the modulation for the onset of chaos together with the critical curves for the
necessary for the occurrence of subharmonics. Figure 6ccurrence of subharmonics, for three periodic orljibg
shows a comparison between Melnikov's predictions and the=0.4, 0.5 and 0.6in the parameter plané\(w), are plotted
corresponding numerical simulations for the critical valuesin Fig. 7. Each curve separates the parameter plane into two
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FIG. 8. Comparison between thresholds for chaos and the sub-
harmonic existence, respectively. Shown are Melnikov's prediction
of chaos(—), the corresponding numerical threshol(@), Melni-
kov’'s thresholds for the subharmonics to exist), and the corre-
sponding numerical thresholdd). Note the coexistence of time-

. . . ) . periodic states and chaos.
regions. Chaotic regimes may occur in the upper region

above the solid curve, while periodic states may exist in the . _ . _

upper region above each one of the other three curves. Of @served experimentally in a bistable optical system whose
great importance is the region where Melnikov’'s methodinput field is frequency modulatef?6,18. However, we
predicts the existence of both subharmonics and chaos. Ihave not observed abrupt transitions frofi-fieriodic state
particular, in that region the system may exhibit a coexistio chaos, which have also been observed experimentally
ence between a time-periodic state and a chaotic attractor, 8%8], even though the analytical study does not exclude this
shown in Fig. 8, where the results from both Figs. 2 and 6situation. In fact, this transition has already been observed
are displayed in the same frame for comparison. Moreovemumerically for nonlinear Duffing oscillatorf25], which

Fig. 9 illustrates a typical situation where two different time- may constitue an approximation of the syst&nunder ap-
periodic states coexist with a strange attractor for the samgropriate condition$15].

set of parameters. To get more insight into the coexistence of
these states we have integrated the sysi@nfor different
initial conditions and the complexity of the attracting basins
is shown in Fig. 10. In addition, we have also observed mul- We have shown that, under time-periodic amplitude
tistability states characterized by the coexistence of two omodulations of the input field, optical bistable systems in the
three time-periodic states and a chaotic state. We emphasig@eod cavity limit may undergo a possible period-doubling
that similar features, namely, homoclinic chaos, have beeroute to chaos. We derived, by means of Melnikov's method,
critical curves to the onset of chaos and nonlinear resonances
leading to it by repeated subharmonic bifurcations. The

FIG. 6. Comparison between Melnikov’s predictidns) for the
existence of subharmonic orbitsmEn=1) and the corresponding
numerical thresholdéA) in the parameter plané\(w). The values
of the other parameters are given in Fig. 2.

V. CONCLUDING REMARKS

A chaos is of the homoclinic type, initiated by transverse inter-
5
xg 0%
“ /
/ 0.2 4
3 *
r y T - ” 1
24 -0.4 —\&.2 0.p 0 0.4
S / Ty
\\5.. A ...44/
14 DY
9] T T T T T 1 —0.4 4
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 .
w
+
FIG. 7. Bifurcation curves for the inner homoclinic loop and o6

subharmonics in the parameter plame ¢) for three typical time-
periodic orbits of systend): ws=0.6 (+), ws=0.5(--), ws=0.4
(X), and the homoclinic loog—).

FIG. 9. Coexistence of a strange attractor and two time-periodic
states in the Poincarsection defined in Fig. 3 with=1.877.
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Ty 0.8 ence may be explained by the identification of simple zeros
of the Melnikov function for subharmonic orbits that lead to
the appearance of time-periodic states in the chaotic region.
This feature is more pronounced for low frequencies of
modulations than for high frequencies. The coexisting basins
of attraction(Fig. 10 show a high degree of intertwining
between the two time-periodic states and the strange attrac-
tor, which indicates their fractal character. Also note that the
prediction by Melnikov’'s method of the threshold of chaos
may be useful in optical systems involving the confror]
or the suppressiof27] of chaos when it is undesirable. In
[27] Chizhevsky and Carbatehave experimentally observed
that parametric resonances permit the suppression of chaos in
a loss-modulated CQlaser. This combined effect of two
time-periodic modulations to suppress chaos can be analyzed
by using Melnikov’s method. For instance, see R28] for
*0-4‘5'5 04-03-02-010b 01 o2 05 o4 o5 an application of Melnikov’s techniques to suppress chaos in
Ty the nonlinear Duffing equation under external modulations
FIG. 10. Basins of coexisting attractors of Fig. 9. Here crossedVith two frequencies. It would now be interesting to analyze
denote the basin of the lower time-periodic state, black squareBOw the transverse instabiliti¢29] in the original problem
denote the basin of the upper time-periodic state, and dots denot8ay be affected by this temporal chaos since this study may
the basin of the strange attractor. be viewed as the behavior of localized structures, far from
their centers, in spatially extended systems, with large aspect
sections between stable and unstable manifqmara_ ratio [30] The interaction between Spatial instabilities and
trices. The predictions are in rather good agreement withtemporal chaos may lead to a shift of chaotic thresholds or
numerical simulations. An important result is the coexistenceeven to the suppression of chaos. An analytical study of the
of time-periodic states and a strange attractor. This coexisspatial instabilities is in progress.
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