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Horseshoe chaos in a bistable optical system under a modulated incident field

Majid Taki*
Laboratoire de Spectroscopie Hertzienne, CNRS URA 249, Universite´ des Sciences et Technologies de Lille, UFR de Physique,

Bâtiment P5, F-59655 Villeneuve d’Ascq Ce´dex, France
~Received 10 December 1996; revised manuscript received 23 June 1997!

It is shown analytically and numerically that a single-mode bistable optical system, under a modulated
incident field, may undergo a chaotical behavior of Smale horseshoe type. The threshold for the onset of chaos
and the bifurcating curves for nonlinear resonances are derived semianalytically, by means of the Melnikov
method, and numerically checked. We also demonstrate the existence of multistable attractors. Two time-
periodic states and a strange attractor are shown to coexist for a certain range of parameters.
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I. INTRODUCTION

The response of nonlinear dynamical systems to exte
periodic forcing may exhibit a large variety of complex b
havior, including phase-locked phenomena, quasiperiodic
and chaos. In particular, dynamic chaos has been detect
a large number of nonlinear systems of various natures.
of these problems that has been studied extensively is op
bistability ~OB! @1–4#. In fact, optical bistability has becom
one of the most active fields in nonlinear optics not only
the richness in nonlinear dynamical behaviors@5–7# but also
for the potential applications of bistable optical devices@8,9#.
Indeed, even slow and moderate modulations of the incid
field may have a great benefit for signal amplifications
such optical systems. The recent and growing progres
nonlinear optics and particularly in laser systems rend
them serious and promising candidates for making opera
devices smaller and faster@10#. However, it is well known
that bistable optical systems can exhibit, in addition to re
lar states, complex chaotic attractors. Even though, in g
eral, these complex systems have high-dimensional ph
space, their chaotic attractors are often low dimensional
reduced dynamical models still provide a good theoret
description of experimental observations@11,12#. In this pa-
per we are interested in the effects of time-periodic modu
tions of the applied incident field on the chaotical dynamic
a passive optical bistable system. More specifically, we c
sider a bistable optical system consisting of an optical un
rectional ring cavity filled with a passive medium, consisti
of a collection of homogeneously broadened two-level ato
and subjected to an incident field whose amplitude is ti
modulated. We focus on the study of the interaction betw
periodic modulations of the incident field and the homoclin
orbit leading to properties involving the global aspects of
dynamic and show that the situation may become dras
even for a reduced dynamical model. We show that the m
features are the phase-locked phenomena leading to no
ear resonance dynamics and transitions from a regular
chaotic regime. We show also that the chaotic regime is
Smale horseshoe type and derive semianalytical express
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for the threshold of the onset of chaos by means of Meln
ov’s method. If the amplitude of the modulation is larg
enough to overcome the dissipation~absorptive terms and
losses in the cavity! then the system may exhibit multistab
attractors consisting of two time-periodic states and a stra
attractor. As a result, one may expect first that switch
phenomena may occur between complex attractors~appear-
ing when modulations are present!. Second, the transvers
intersections between stable and unstable manifolds~separa-
trices! may give rise to chaotic transport throughout som
particular regions of phase space. More precisely, in the
sence of modulations, the homoclinic orbit separates
phase-space portrait in three regions. The motions are q
tatively different in each one. Furthermore, any initial co
dition starting in one region remains in it forever. On th
contrary, under time-periodic amplitude modulations, the
derlying homoclinic orbit ‘‘breaks up,’’ leading to transvers
intersections between its stable and unstable manifolds,
in particular chaotic regimes make it possible for motio
inside the homoclinic orbit to escape it. Similarly, motio
outside the homoclinic orbit may enter it. This gives rise
the phenomenon of transport in phase space between reg
exhibiting qualitatively different motions~for more details
about transport theory see Ref.@13#!. One consequence fo
bistable optical systems is that the input power for comm
tation may be considerably lower under small time-perio
amplitude modulations.

The rest of the paper is organized as follows. In Sec. II
give a physical description of the problem. Section III pr
vides a brief review of Melnikov’s techniques. Section I
contains the analytical treatments for both the homocli
orbit and the resulting horseshoe chaos in the system.
same approach is applied to study the nonlinear resona
and the coexistence between time-periodic states an
strange attractor. Numerical results and a comparison w
analytical predictions are given. Concluding remarks con
tute Sec. V.

II. PHYSICAL DESCRIPTION OF THE PROBLEM

A. Physical model

In this study we consider an OB system that contains
optical unidirectional cavity filled with a passive medium
6033 © 1997 The American Physical Society



a
e

op
ox
th

-
o

c
th

s

d
E

en
re
re
od

rg

ie

a
to

en
e

al
th

tic
e
in
e-
o

r

l,
h
ib
th
a
e
n
i

ain
em.

we

ly
ing
s

of

is

d.
ere

is
ba-
er-
i-
t,

in
ed
the
ck
it,
m-

6034 56MAJID TAKI
consisting of homogeneously broadened two-level atoms
driven by an external optical signal whose amplitude is tim
periodic modulated. Assuming that the resonant cavity is
erating in a single mode and using the plane-wave appr
mation together with the mean-field limit, we can reduce
Maxwell-Bloch equations@14# to

dF

dt
5k@y2~11 iu!F22CP#, ~1a!

dP

dt
5g'@FD2~11 iD!P#, ~1b!

dD

dt
52g iF1

2
~FP* 1F* P!1D21G , ~1c!

whereF, D, andP are the normalized slowly varying enve
lopes of the electric field, of the population difference, and
the molecular polarization, respectively. The parameterC is
the bistability parameter,k is the cavity linewidth, andg i

andg' are the relaxation rates of the population differen
and polarization. The frequencies of the external field,
cavity, and the atoms are denoted byv0 , vc , andva , re-
spectively. The two detuning parameters are defined aD
5(va2v0)/g' andu5(vc2v0)/g' . The normalized am-
plitude of the external fieldy is assumed to be real an
time-periodic modulated. In the absence of modulations,
~1! was derived by Bonifacio, Granchi, and Lugiato@15# as a
one-mode theory of optical bistability and has been ext
sively studied in a number of applications. In fact, they p
dict absorptive as well as dispersive bistability and the
sults are qualitatively and quantitatively in rather go
agreement with the experimental observations@11,12#. It has
been shown that since the bistability parameter is la
enough, in the absence of modulations, Eq.~1! undergoes a
period-doubling route to chaos. Many authors have stud
the chaotic dynamics of Eq.~1! for different ranges of con-
trol parameters. Gang, Ning, and Haken@16# have analyzed
the instability regions in detail and revealed that chaotic
tractors may coexsist with time-periodic orbits leading
bistability and even tristability phenomena. In the pres
work, however, we are interested in the effects of tim
periodic modulations on the input field, which greatly com
plicate the situation. First, it is well known that extern
modulations favor the nonlinear resonances leading to
selection between time-periodic attractors. Second, op
systems with modulated parameters often exhibit experim
tal chaotic motion for a large range of parameters includ
both active~lasers! @17# and passive optical systems. Mor
over, chaotic motions have already been experimentally
served in a passive optical bistable system unde
frequency-modulated input field@18#. The authors have
shown numerically that Eq.~1! reproduces fairly well their
experimental observations including chaotic regimes. Stil
number of important questions remain to be answered. W
is the nature of choas appearing in the system? Is it poss
to predict the threshold of the onset of chaos? What is
structure of the attracting basins? In order to attempt to
swer these questions we concentrate on the reduced mod
the good cavity limit, which constitutes a simplified versio
of Eq. ~1!, and assume that the amplitude of the input field
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time-periodic modulated. Still, this model captures the m
features of the nonlinear dynamics appearing in the syst

B. Reduced model system

In order to keep the analysis as simple as possible,
consider the good cavity case wherek!g i ,g' . In this situ-
ation the atomic variables vary in time much more rapid
than the field variables and can be eliminated by sett
dP/dt5dD/dt50 in Eq. ~1!. Thus one obtains the relation

Ps5
~12 iD!F

11D21uFu2 , D25
11D2

11D21uFu2

and the self-contained equation for the field

k21
dF

dt
5y2FF11

2C

11D21uFu2
1 i S u2

2CD

11D21uFu2D G .
~2!

For the sake of simplicity, let us consider conditions
purely dispersive OB@15#:

D2@1, Du@1, u!D. ~3!

In this case, in order to go further into the analysis, it
convenient to write Eq.~2! in a simplified form. Hence we
rescaleF, y, andt by settingt5kut, X5(u/2CD)1/2F, and
Y5(u/2CD)1/2(y/u). We write Eq.~2! as a first-order sys-
tem

dx1

dt
5Y01x2S 12

1

a1uXu2D2«Fx1S d11
d2

a1uXu2D
1A sinvtG , ~4a!

dx2

dt
52x1S 12

1

a1uXu2D2«x2S d11
d2

a1uXu2D , ~4b!

where a5(11D2)u/2CD, d1«51/u, and d2«51/D. The
amplitude modulation is written in the formY5Y0
1«A sinvt, where« is a small parameter,«A is the modu-
lation of the scaled fieldY, and the scaled field variableX
5x11 ix2 . Note that the third relation in the conditions~3!
of purely dispersive OB leads tod1@d2 , which means that
the two terms in Eq.~4! whered2 appears may be neglecte
In order to extend our analytical analysis to the case wh
all terms are significant, we will takeD andu large enough
but of the same order of magnitude. Melnikov’s method
independent of the relative order of magnitude in pertur
tive terms. In addition, we are not interested in the unp
turbed («50) system in itself; it serves mainly to approx
mate the analytical form of the homoclinic orbits. In fac
when«50, the unperturbed system~Fig. 1! has already been
used by Lugiato, Milani, and Meystre@19# as a basic system
to derive the analytical threshold for anomalous switching
dispersive optical bistability. Furthermore, the unperturb
problem cannot describe optical bistability because of
marginal instability of the stationary solutions due to the la
of dissipation. However, it contains the homoclinic orb
which is responsible for the anomalous switching pheno
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56 6035HORSESHOE CHAOS IN A BISTABLE OPTICAL . . .
enon, as pointed out in Ref.@19#. Here we show that ho
moclinic orbits still play a crucial role in the chaotic beha
ior of the perturbed system when the competition betw
dissipation~absorptive terms and losses in the cavity! and
modulation has been restored. Indeed, the homoclinic or
are related to global aspects of the dynamic. So, in the
lowing analysis of the chaotic regimes and nonlinear re
nances leading to it, we will use global perturbation tec
niques originally due to Melnikov@20#.

III. MELNIKOV’S METHOD: PERTURBATIONS
OF PLANAR HOMOCLINIC AND PERIODIC ORBITS

Melnikov’s method is now widely described in classic
books and papers@21,22#. In this section we briefly review
the analytical techniques to be used below. For some typ
applications in physics and fluid mechanics see Ref.@23#; see
also Ref.@24# for very recent developments of Melnikov’
techniques.

FIG. 1. Phase space of the unperturbed («50) system~4!. A
family of level curves is shown, whena50.5. One stationary solu
tion is for ~a! Y050.25.Yc , while the double homoclinic connec
tion is shown for~b! Y050.1,Yc .
n

its
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-
-

al

We consider a system of ordinary differential equations
the form

dX

dt
5 f ~X!1«g~X,t!, ~5!

whereX5(u,v), f 5( f 2(X)
f 1(X)

), g5(g2(X,t)
g1(X,t)

), andg is periodic

in time of periodT. Assume that, for«50, the above system
possesses a homoclinic orbit~separatrix! Xh(t) to hyperbolic
saddle pointp0 ~or homoclinic cycles! and a continuous fam
ily of periodic orbitsXa(t) in the interior ofXh(t). There-
fore, Melnikov’s function is defined as

M ~t0!5E
2`

1`

f „Xh~t!…∧g„Xh~t!,t1t0…dt, ~6!

where the wedge product is defined asX1∧X25u1v2
2u2v1 . Note that the initial timet0 appears explicitly since
solutions of Eq.~5! are not invariant under time translation
Furthermore,t0 is used for the parametrization of the Poi
caré section, which is constructed by sampling the coor
natesu,v each time the functiong completes one period. In
fact, M (t0) provides a good mesure@to O(«2)#, in the Poin-
caré section, of the distanced(t0) between the stable an
unstable perturbed manifolds, which is defined as

d~t0!5«
M ~t0!

u f „X0~0!…u
1O~«2!. ~7!

In the same spirit the existence of the periodic orbitsXa(t)
of periodmT/n ~the subharmonics! is evaluated by the sub
harmonic Melnikov function

Mm/n~t0!5E
0

mT

f „Xa~t!…∧„Xa~t!,t1t0…dt. ~8!

FIG. 2. Critical curve for the onset of chaos, in the parame
plane (A,v) of the external field input. Discrete symbols corr
spond to numerical thresholds of chaos. The critical curve for
outer homoclinic loop is not shown in the figure. It is just a tran
lated curve, toward high values ofA, of that of the inner one. For
comparison and clarity we have set the other parameters ta
50.5, d15d251, «50.05, andY050.1 for all figures.



e

i
d

te
tw

dl
ly
c

dd
d
si
’s
n

ec

m

p

rm
p

isc
ke

all
de-
t
a-

ical

2
pa-

rbed

.
t are

re-
he
for
tic.
d

iors
s-

fy,
o
the
nt
om
ical
at
pli-
er-
ical
ry
os.
ved
w,
ated
is
act
otic

e

6036 56MAJID TAKI
Therefore, simple zeros ofM (t0) correspond to transvers
intersections of stable and unstable manifolds leading
Smale horseshoe chaos@21#, while those ofMm/n(t0) give
rise to subharmonic orbits of periodmT.

IV. TEMPORAL CHAOS AND NONLINEAR RESONANCES

A. Smale horseshoe chaos

We return now to system~4!. When «50, the unper-
turbed Hamiltonian reads

H~x1 ,x2!5 1
2 ~x1

21x2
2!1x2Y02 1

2 ln~a1x1
21x2

2!1const
~9!

and constitutes a one-parameter family of level curves
phase space (x1 ,x2). The examination of the stationary fixe
points leads to the bistability conditions, namely,a,1 and
Y0,Yc , where

Yc
25~2a2 1

2 1A2a1 1
4 !S 12

1

211A8a11
D 2

. ~10!

Whena>1 no bistability can occur and we are not interes
in this case. Figure 1 displays the phase space showing
different situations with typical values of the parametersa
andY0 . Note the double homoclinic connection, via a sad
point, of the two homoclinic loops. This situation is high
degenerate since each homoclinic loop is formed by the
incidence of the stable and unstable manifolds of the sa
fixed point. Hence one would expect them to break up un
the influence of input field amplitude modulations and dis
pative terms. According to Sec. III, we use Melnikov
method to evaluate the threshold of chaos arising from tra
verse intersections of the stable and unstable manifolds@21#.
We now intruduce the Melnikov functionM (t0) for the ho-
moclinic loopsXh5(x1,h ,x2,h) ~settingh for both inner and
outer loops!:

M ~t0!52E
2`

1`S d1 1
d2

a1uXhu2D Fy0x2,h

1S 12
1

a1uXhu2D UXhU2Gdt

1A cosvt0E
2`

1`S 12
1

a1uXhu2D x1,h sinvt dt

5I 11I 2A cosvt0 ,

where I 1 and I 2 are the first and second integrals, resp
tively. Therefore, simple zeros ofM (t0) are characterized by
the relationA.uI 1 /I 2u5Ac , where Ac can be viewed as
being the minimum amplitude modulation~minimum modu-
lated input power! necessary for the system to transit fro
regular to chaotic regimes. To evaluate the integralsI 1 and
I 2 , one needs the analytical forms of the homoclinic loo
Xh , which are determined by Eq.~9!. Unfortunately, their
time dependence cannot be obtained in an explicit fo
Therefore, we will calculate them numerically, using an a
proach similar to that used by Taki, Fernandez, and Rein
in @23#. We emphasize that we have systematically chec
to
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the analytical predictions for different values of the sm
parameter« and we have observed that the accuracy
creased by increasing«. This is obvious from the fact tha
Melnikov’s method is a first-order method for the small p
rameter« @see Eq.~7! in Sec. III#. Also, in the following
numerical simulations we have set the parameters to typ
valuesa50.5, Y050.1, d15d251, and«50.05. The input
field parametersA and v are control parameters. Figure
shows the critical curve for the onset of chaos, which se
rates the parameter plane (A,v) into two regions, namely,
the upper region where the stable and unstable pertu
manifolds intersect transversely, sinceM (t0) has simple ze-
ros, and the system~4!, which exhibits chaotic behaviors
There exist, in the phase space, sets of chaotic orbits tha
of Smale horseshoe type@21#. In the lower region no inter-
section can occur at all. Transitions between these two
gions occur by a homoclinic bifurcation. More precisely, t
last case gives the main result of Melnikov’s theory that,
any parameter in that region, the whole system is not chao
Thus, for all initial conditions the behavior is regular an
globally related to planar systems whose typical behav
are fairly well understood. In particular, we recover the cla
sicalS-shaped bistability curve. Note that it is easy to veri
by using the Poincare´-Bendixon criterion, that there are n
periodic or homoclinic orbits and the only attractors are
fixed points in the Poincare´ sections, namely, the resona
and the forced steady-state oscillations that originate fr
the stable equilibrium states. We have not shown the crit
curve for the outer homoclinic loop, which is similar to th
of the inner one translated toward high values of the am
tudeA. Chaos has been investigated numerically for diff
ent sets of parameters, and numerical thresholds for typ
frequencies are also illustrated in Fig. 2, which are in ve
good agreement with the critical curve for the onset of cha
Although the agreement is satisfactory, we have obser
that Melnikov’s technique provides a good, but slightly lo
estimate of the chaos threshold. Hence we have integr
the system~4! for different sets of parameter values and th
tendency is confirmed. This might be understood by the f
that at the onset of chaos the attracting basin of the cha

FIG. 3. Bifurcation diagram in the Poincare´ section of the real
partx1 of the electric field versus the amplitudeA of the modulation
with v50.5. The Poincare´ section is constructed by sampling th
coordinatex1 each time the input field completes one period.
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FIG. 4. Sequence of period doubling in the Poincare´ section defined in Fig. 3. The unperturbed~i.e., «50! inner homoclinic loop is
dashed in~a! for reference.A is increased from~a! 1.7, ~b! 1.75,~c! 1.79,~d! 1.797,~e! 1.81, and~f! 1.88, corresponding to the 1T, 2T, 4T,
and 8T transitions, chaos, and chaos, respectively.
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regime constitutes a small set of phase space that render
numerical observation of chaos at the threshold very d
cult. We also have numerically integrated the system~4! in
order to characterize the nature of transitions from regula
chaotic regimes by increasing from zero the amplitudeA of
the field amplitude modulation. The only route to chaos
have observed is the classical period-doubling route as
played in Figs. 3 and 4 for a typical value of the frequency
the modulation. However, whenA is further increased the
chaotic behavior develops~see Fig. 3! and a different stable
periodic state appears. Concerning this different perio
the
-

to

e
is-
f

ic

state, we have observed, at the coexistence threshold, a
time chaotic transient that disappears under a small in
ment of the amplitudeA, as shown in Fig. 5. This importan
feature of the coexistence of time-periodic states and
strange attractor for a certain range of parameters tha
related to nonlinear resonances will be discussed in the
subsection.

B. Nonlinear resonances

We have observed in the preceding subsection that
Smale horseshoe chaos may be related to a sequence o
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FIG. 5. Chaotic transients of the real partx1 of the electric field under a small increment of the amplitude of the modulation.~a! The
asymptotic state restabilizes on a 1T periodic state forA51.8802.~b! Long-time transients chaos before stabilization on the 1T periodic
state forA51.8801. Both traces are made with the same initial condition and the parameters are the same as those of Fig. 4.
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harmonic bifurcations, which are important for transitio
both from linear to nonlinear resonances and from regula
chaotic behaviors. Thus, in this section we focus on the
namics of large-amplitude periodic orbits inside the h
moclinic loops. Again we have evaluated the subharmo
Melnikov function Mm/n(t0) defined by Eq.~8! in the pre-
ceding subsection, which enables us to detect the exist
of subharmonics and the occurrence of their saddle-node
furcations exactly. Hence simple zeros ofMm/n(t0) give rise
to subharmonic solutions whose periodsTs are related to the
period T of the modulation by the relationTs5(m/n)T,
wherem andn are prime integers. In fact, the above simp
zeros, in the parameter plane (A,v), permit us to estimate
the minimum values of the amplitudeA of the modulation
necessary for the occurrence of subharmonics. Figur
shows a comparison between Melnikov’s predictions and
corresponding numerical simulations for the critical valu
to
-

-
ic

ce
i-

6
e

s

of the amplitudeA necessary for subharmonic orbits~m51
and n51! to exist, versus frequency. The agreement
tween predictions and numerical thresholds is satisfact
except for low frequencies, where Melnikov’s method pr
vides slightly lower estimates. By increasingA from its criti-
cal value~for fixedv!, the resonant orbits undergo a repeat
sequence of period doubling. WhenA is further increased the
situation becomes more and more complicated. We have
served a coexistence between~i! different periodic states and
~ii ! periodic states and a chaotic attractor. This coexiste
may be understood by the comparison between the crit
curves for the existence of subharmonics on the one h
and the onset of chaos on the other. Indeed, the critical cu
for the onset of chaos together with the critical curves for
occurrence of subharmonics, for three periodic orbits~vs
50.4, 0.5 and 0.6! in the parameter plane (A,v), are plotted
in Fig. 7. Each curve separates the parameter plane into
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regions. Chaotic regimes may occur in the upper reg
above the solid curve, while periodic states may exist in
upper region above each one of the other three curves.
great importance is the region where Melnikov’s meth
predicts the existence of both subharmonics and chaos
particular, in that region the system may exhibit a coex
ence between a time-periodic state and a chaotic attracto
shown in Fig. 8, where the results from both Figs. 2 an
are displayed in the same frame for comparison. Moreo
Fig. 9 illustrates a typical situation where two different tim
periodic states coexist with a strange attractor for the sa
set of parameters. To get more insight into the coexistenc
these states we have integrated the system~4! for different
initial conditions and the complexity of the attracting bas
is shown in Fig. 10. In addition, we have also observed m
tistability states characterized by the coexistence of two
three time-periodic states and a chaotic state. We empha
that similar features, namely, homoclinic chaos, have b

FIG. 6. Comparison between Melnikov’s predictions~3! for the
existence of subharmonic orbits (m5n51) and the corresponding
numerical thresholds~m! in the parameter plane (A,v). The values
of the other parameters are given in Fig. 2.

FIG. 7. Bifurcation curves for the inner homoclinic loop an
subharmonics in the parameter plane (A,v) for three typical time-
periodic orbits of system~4!: vs50.6 ~1!, vs50.5 ~--!, vs50.4
~3!, and the homoclinic loop~—!.
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observed experimentally in a bistable optical system wh
input field is frequency modulated@26,18#. However, we
have not observed abrupt transitions from 1T-periodic state
to chaos, which have also been observed experimen
@18#, even though the analytical study does not exclude
situation. In fact, this transition has already been obser
numerically for nonlinear Duffing oscillators@25#, which
may constitue an approximation of the system~4! under ap-
propriate conditions@15#.

V. CONCLUDING REMARKS

We have shown that, under time-periodic amplitu
modulations of the input field, optical bistable systems in
good cavity limit may undergo a possible period-doubli
route to chaos. We derived, by means of Melnikov’s meth
critical curves to the onset of chaos and nonlinear resona
leading to it by repeated subharmonic bifurcations. T
chaos is of the homoclinic type, initiated by transverse int

FIG. 8. Comparison between thresholds for chaos and the
harmonic existence, respectively. Shown are Melnikov’s predict
of chaos~—!, the corresponding numerical thresholds~j!, Melni-
kov’s thresholds for the subharmonics to exist~3!, and the corre-
sponding numerical thresholds~m!. Note the coexistence of time
periodic states and chaos.

FIG. 9. Coexistence of a strange attractor and two time-perio
states in the Poincare´ section defined in Fig. 3 withA51.877.
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6040 56MAJID TAKI
sections between stable and unstable manifolds~separa-
trices!. The predictions are in rather good agreement w
numerical simulations. An important result is the coexisten
of time-periodic states and a strange attractor. This coex

FIG. 10. Basins of coexisting attractors of Fig. 9. Here cros
denote the basin of the lower time-periodic state, black squ
denote the basin of the upper time-periodic state, and dots de
the basin of the strange attractor.
s

3
ll

ys

ys

-
.

,
,

h
e
t-

ence may be explained by the identification of simple ze
of the Melnikov function for subharmonic orbits that lead
the appearance of time-periodic states in the chaotic reg
This feature is more pronounced for low frequencies
modulations than for high frequencies. The coexisting bas
of attraction ~Fig. 10! show a high degree of intertwining
between the two time-periodic states and the strange at
tor, which indicates their fractal character. Also note that
prediction by Melnikov’s method of the threshold of cha
may be useful in optical systems involving the control@17#
or the suppression@27# of chaos when it is undesirable. I
@27# Chizhevsky and Carbala´n have experimentally observe
that parametric resonances permit the suppression of cha
a loss-modulated CO2 laser. This combined effect of two
time-periodic modulations to suppress chaos can be anal
by using Melnikov’s method. For instance, see Ref.@28# for
an application of Melnikov’s techniques to suppress chao
the nonlinear Duffing equation under external modulatio
with two frequencies. It would now be interesting to analy
how the transverse instabilities@29# in the original problem
may be affected by this temporal chaos since this study m
be viewed as the behavior of localized structures, far fr
their centers, in spatially extended systems, with large as
ratio @30#. The interaction between spatial instabilities a
temporal chaos may lead to a shift of chaotic thresholds
even to the suppression of chaos. An analytical study of
spatial instabilities is in progress.
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